National Marine Sanctuaries

Ocean Acidification: The Other CO2 Problem

Richard A. Feely
NOAA/Pacific Marine Environmental Laboratory
February 2009

With special thanks to: James Orr, Victoria Fabry, Carol Turley, Chris Sabine, Joanie Kleypas, Kitack Lee, and Simone Alin

What we know about the ocean chemistry of ... saturation state

$$CO_2 + CO_3^{2-} + H_2O \Leftrightarrow 2HCO_3^{-}$$

Saturation State

$$\Omega_{phase} = \frac{\left[Ca^{2+}\right]\left[CO_3^{2-}\right]}{K_{sp,phase}^*}$$

 $Ca^{2+} + CO_3^{2-} \rightarrow CaCO_3$

calcium carbonate calcium

calcium carbonate

 $\Omega > 1 = precipitation$

 Ω = 1 = equilibrium

 $\Omega < 1 = dissolution$

What we know about ocean CO2 chemistry ... from field observations

WOCE/JGOFS/OACES Global CO2 Survey

~72,000 sample locations collected in the 1990s

DIC $\pm 2 \mu \text{mol kg}^{-1}$ TA \pm 4 μ mol kg⁻¹ Sabine et al (2004)

What we know about ocean CO_2 chemistry...from observed shoaling saturation horizons

The aragonite and calcite saturation horizons have shoaled towards the surface of the oceans due to the penetration of anthropogenic CO_2 into the oceans.

Feely et al. (2004)

What we know about ocean CO_2 chemistry...from observed aragonite and calcite saturation depths

Natural processes that could accelerate the ocean acidification of coastal waters

Coastal Upwelling

North American Carbon Program

Continental Carbon Budgets, Dynamics, Processes, and Management

Aragonite Saturation State in west coast waters

Experiments on Many Scales

Biosphere 2

SHARQ
Submersible Habitat for
Analyzing Reef Quality

Aquaria and Small Mesocosms

Coccolithophore (single-celled algae)

Riebesell et al.(2000); Zondervan et al.(2001)

Shelled Pteropods (planktonic snails)

Respiratory CO_2 forced Ω_A <1 Shells of live animals start to dissolve within 48 hours

Whole shell: Clio pyramidata

Arag. rods exposed

Prismatic layer $(1 \mu m)$ peels back

Aperture (~7 µm): advanced dissolution

Normal shell: no dissolution

Orr et al. (2005)

Response of mussels & oysters to elevated CO_2

Decrease in calcification rates for the 2 species:

Mytilus edulis Crassostrea gigas

• Significant with pCO_2 increase and $[CO_3^{2-}]$ decrease

At *pCO*₂ 740 ppmv:

- 25% decrease in calcification for mussels
- 10% decrease in calcification for oysters

Bivalve juvenile stages can also be sensitive to carbonate chemistry

Hard shell clam Mercenaria

- Common in soft bottom habitats
 Used newly settled clams
- Size 0.3 mm
- Massive dissolution within 24 hours in undersaturated water; shell gone within 2 weeks
- Dissolution is source of mortality in estuaries & coastal habitats

Potential Effects on Open Ocean Food Webs

Pteropods

What we know about the biological impacts of ocean acidification ...on marine fish

Scorecard of Biological Impacts

Response to increasing CO_2

Physiological	Major	# species				
<u>process</u>	group	studied			L'	
Calcification						
Coccoli	ithophores	4	2	1	1	1
Planktonic Fo	raminifera	2	2	-	-	-
	Molluscs	4	4	-	-	-
Ec	hinoderms	2	2	-	-	-
Trop	ical Corals	11	11	-	-	-
Coralline	Red Algae	1	1	-	-	-
Photosy <u>nthes</u> is¹						
Coccoli	thophores ²	2 2	-	2	2	-
Pr	rokaryotes	2	-	1	1	-
12	Beagrasses	5	-	5	-	
Nitrog <u>en Fi</u> xation						_
Cyal	nobacterio	1	-	1	-	-
Reproduction						
	Molluscs	4	4	-	-	-
Ec	hinoderms	1	1	-	-	-

¹⁾ Strong interactive effects with nutrient and trace metals availability, light, and temperature

²⁾ Under nutrient replete conditions

Conclusions

- Impacts of ocean acidification on ecosystems are largely unknown.
- \triangleright Calcification in many planktonic organisms is reduced at elevated CO_2 , but the response is not uniform.
- Possible responses of ecosystems are speculative but could involve changes in species composition & abundances - could affect food webs, biogeochemical cycles.
- \blacktriangleright Baseline data with sufficient resolution are lacking in coastal regions where $CaCO_3$ saturation states are expected to decrease dramatically over in next 50-100 years.