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“i What we know about the ocean chemistry of ..satfuration state

CO,+CO7 + H,O < 2HCO;

Saturation State
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_ g\é What we know about ocean CO, chemistry ...from field
o wes ODSErvations
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WOCE/JGOFS/OACES Global CO, Survey
~72,000 sample locations DIC + 2 pmol kg!

collected in the 1990s TA+4 [./mOI kg_l Sabine et al (2004)



\ ( What we know about ocean CO, chemistry...from observed
y ‘\/\ shoaling saturation horizons

45 Global Water-column
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10 SaTur'ahon Horizon Saturation Horizon

The aragonite and calcite
saturation horizons have

o0 shoaled towards the surface
g o0 of the oceans due to the
zo. 800- penetration of anthropogenic

CO, into the oceans.

1400 | " |2V [eely et al. (2004)
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\ ( What we know about ocean CO, chemistry...from observed
mj aragonite and calcite saturation depths
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\%\/ Natural processes that could accelerate the

e ocean acidification of coastal waters

»  Coastal Upwelling

Upwelling




North American

Carbon Program

Continental Carbon Budgets, Dynamics, Processes, and Management
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B Experiments on Many Scales

Biosphere 2

SHARQ
Submersible Habitat for
Analyzing Reef Quality

Provided by Mark Eakin

scienceffora 3hanging warfd\

Aquaria and Small Mesocosms



RE Coccolithophore
o e (single-celled algae)
pCO, 280-380 ppmv pCO, 780-850 ppmv

Calcification
decreased

-9 1o 18°/o

Gephyrocapsa oceanica Malformed liths at high CO,
Manipulation of CO, system by addition of HCl or NaOH

Riebesell et al.(2000); Zondervan et al.(2001)



R Shelled Pteropods
(planktonic snails)

Respiratory CO, forced Q, <1
Shells of live animals start to dissolve within 48 hours
Whole shell: Arag. rods exposed ~ Prismatic layer

Clio pyramidata — -~ (1 pm) peels back g

4

Aperture (~7 pm): Normal shell: no
advanced dissolution dissolution

Orr et al. (2005)
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§7 Response of mussels &
oysters to elevated CO,

Decrease in cqlcifica’rion rates
for the 2 species:

Mytilus edulis
Crassostrea gigas

- Significant with fCOz
increase and [CO5%"] decrease

At pCO, 740 ppmv:

-25% decrease in calcification
for mussels

-10% decrease in calcification
for oysters



Bivalve juvenile stages can also be
sensitive to carbonate chemistry

Hard shell clam Mercenaria

« Common in soft bottom habitats
Used newly settled clams

* Size 0.3 mm

* Massive dissolution within 24 hours in
undersaturated water; shell gone
within 2 weeks

» Dissolution is source of mortality in
estuaries & coastal habitats

Green et al., 2004



Pteropods

Potential Effects on
Open Ocean Food Webs

ARCOD®@ims.uaf.edu

Pacific Salmon



What we know about the biological impacts of ocean
=—— acidification ..on marine fish

Research on Impacts of OA on Pacific Salmon
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A Western Alaskan Sockeye
< British Columbia Sockeye

o Central Alaskan Pink
O Japanese Chum

Predicted effect of climate change
on pink salmon growth:

cromek <
Misc pred 2oop M e 4

0%

Cterophores Ewphausids

»/ 4%

Mesopel. fish

*10% increase in water temperature
leads to 3% drop in mature salmon
Preropods Peiforage ksh body weight (physiological effect).
45%

*10% decrease in pteropod
production leads to 20% drop in
mature salmon body weight (prey
limitation).

-

(Aydin et al. 2005) g~




¥ Scorecard of Biological

Impacts
Response to increasing CO,
Physiological Major # species | 7~
process group studied
Calcufl_ca'rlon
4 2 1 1 1
2 2 - - -
Molluscs 4 4 - - -
“4 Echinoderms 2 2 - - -
Tropical Corals 11 11 - - -
Coralline Red Algae 1 1 - - -
Coccolithophores? 2 - 2 2 -

N
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—

—
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e Prokaryotes
h. Seagrasses 5 - 5 - -

Nitrogen FIXGTIOH

Cyanobacteria 1 - 1 - -

: Molluscs 4 4 - - -
“! Echinoderms 1 1 - - -

1) Strong interactive effects with nutrient and trace metals availability, light, and femperature

2) Under nutrient replete conditions
Figure from Doney et al. (2009)
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7 Conclusions

» Impacts of ocean acidification on ecosystems are
largely unknown.

» Calcification in many planktonic organisms is reduced at
elevated CO,, but the response is not uniform.

» Possible responses of ecosystems are speculative but
could involve changes in species composition &
abundances - could affect food webs, biogeochemical
cycles.

» Baseline data with sufficient resolution are lacking in
coastal regions where CaCO; saturation states are

expected to decrease dramatically over in next 50-100
years.



