

Sediment and the Sanctuary: A Coastal Processes & Climate Change Story

Douglas George, PhD Greater Farallones National Marine Sanctuary Advisory Council Meeting

November 14, 2016

Presentation Pathway

- Sediment Processes
- Managing Sediment Along the Coast
 - Local Examples
- Climate Change Plan Connection

Sediment Processes

- Generally accepted northsouth flow for sand due to currents and waves
- Mud plumes more dispersive across the shelf then reworked by waves

Grainsize

Morphology

• Thickness on Seafloor

Sediment Units

 Littoral cell – geographic area offshore that contains a complete cycle of sedimentation including sources, transport paths, and sinks.

Sanctuary Littoral Cells

Headlands and Littoral Cells

Sediment bypassing

Short, 1999

- What makes a headland a littoral cell boundary?
- Are California's littoral cells appropriately defined?

Headland study: combination of GIS and numerical modeling

Coastal Management Implications

- Local Beach Nourishments
 - More effective and appropriate placements
 - Use the right headlands as anchors, especially as a climate change strategy

- Conservation Zones
 - Incorporation into the MPAs, ASBSs, NERRS, Sanctuaries management plans for sediment, biology, water quality concerns

Carlsbad Nourishment, SANDAG

Headland Study 1: Classification of CA Headlands

Motivation

Questions

Headland Study 1: Classification of CA Headlands

- Classifications of marine features is common
 - Beaches, coral reefs, atolls, submarine canyons, littoral cell grain size, wave climates
- No classification scheme for headlands in research community
 - No guide for 'reality'-based modeling design
- What are the key physical and geomorphic parameters that differentiate headlands?
 - Could the results redefine littoral cell boundaries along the California coastline or other cliff-backed coastlines with littoral cell boundaries?

Bodega Head example

1. Selection

2. Geomorphic Data

CSMP Tiles
Reference Transect Tile

Reference Transect
Headland Transect Tiles
Headland Transect SOURCE: NOAA and Dewber

3. Bathymetric Data

Headland Classifying: Bathymetry

Bodega Head

Findings for California (& beyond)

- Primary parameters that define headlands (out of 54 initial ones):
 - size (perimeter)
 - sharpness (apex angle)
 - bathymetric asymmetry
- 8 groups based on those parameters
- Littoral cell boundaries along California
 - Potential to reassess some boundaries based on geomorphic elements

Motivation

Questions

Headland Study 2: Modeling Sediment at Headlands

- Generalize across headland types as field observations not possible for every headland
 - Create transferability to other coastal systems
- Investigate the relative importance of variables affecting transport for future headland analyses
- What are controlling factors on circulation and transport patterns for idealized headlands?
- What factors create which type of littoral cell boundaries?

Input: Morphology

8

2 4 6 8 10

Easting (km)

Input: Processes & Sediment

Waves	Least	Most
Direct	$H_s = 2 \text{ m}$ $T_p = 10 \text{ s}$ $\theta_d = 270^\circ$	$H_s = 7 \text{ m}$ $T_p = 16 \text{ s}$ $\theta_d = 270^\circ$
Oblique	$H_s = 2 \text{ m}$ $T_p = 10 \text{ s}$ $\theta_d = 345^\circ$	$H_s = 7 \text{ m}$ $T_p = 16 \text{ s}$ $\theta_d = 345^\circ$

Developed from USGS wave study (Erikson et al., 2014)

- Sediment Size
 - Fine sand (125µm)
 - Fine-medium sand (250μm)
 - Medium sand (500μm)
- Bed
 - Reefed (Bodega Head)
 - Sandy (Pt. Dume, Malibu)

Headland Circulation Patterns

Entering the world of moustaches and jets

depth averaged velocity, magnitude (m/s) 09-Dec-2015 00:00:00

4 6 8 10

Littoral Cell Boundary Types

Oblique Waves

(B)

(F)

Likely to Be Littoral Cell **Boundary?**

Blocking - Partial: coarse blocked

Blocking - Partial: coarse blocked

Blocking - Full: all blocked

Blocking - Partial: divergent by grain size

Direct Waves

Headland Study Wrap-up

1. The controlling factors on sediment transport

- Morphology: Size then shape differentiate flow and transport patterns
- Processes: Relative wave angle essential to determine transport

2. Application

- Littoral cell boundaries are more nuanced
- Beach nourishment/sediment management activities should consider influence of headlands for sustainability
 - Climate change adaptation
 - Coastal erosion

Managing Sediment Along the Coast

California Coastal Sediment Master Plan

A "Super-Regional" Approach for All of California

CA's Coastal Regional Sediment Management Plans (CRSMPs)

The Big Questions of a CRSMP

- Where are the sediment challenged areas?
 - Erosion (e.g., coastal highway segments)
 - Sedimentation (e.g., Bolinas Lagoon)
- What's at risk?
 - Human Needs: Infrastructure, Development
 - Nature's Needs: Habitats
 - Both: Resilience to Climate Change/SLR
- How bad is that risk?
- What can be done to minimize that risk?

Sediment Management Tools

A Short List

- Harder (Gray) Infrastructure
 - Jetties/groins
 - Seawalls
 - Breakwaters/reefs
- Softer approaches
 - Beach nourishment
 - Living shorelines
- Overarching
 - Managed retreat
 - Restoration of natural processes

Example: Problem → Process → Solutions

South Ocean Beach

Critical Erosion Areas

Proposed Ideas

- Beach Nourishment
- Managed Retreat

- Beach Nourishment
- Nourishment and Reefs
- Managed Retreat

Constraints on Solutions

- Sediment sources for beach nourishment
- Nearshore dynamics
 - transport pathways?
 - reefs improbable?
- Sensitive species and habitats
- Erosion uncertainty
- Terrestrial realities

Sanctuary Challenges

- Designation of GFNMS
 - § 922.82 (a) (4):

"Discharging or depositing, from beyond the boundary of the Sanctuary, any material or other matter that subsequently enters the Sanctuary and injures a Sanctuary resource or quality..."

- § 922.82 (a) (5):
- "...drilling into, dredging, or otherwise altering the submerged lands of the Sanctuary in any way..."
- Closure of Sanctuary Exclusion Area

Propelling a Sanctuary CRSMP

- Acquisition of extensive coastline with northern expansion
- Sonoma State Beach 3rd in attendance for all state beaches
- 85-125 miles of coastal highway in Marin-Sonoma-Mendocino
- Estero and beach habitats
- Existing work groups
 - Bolinas Lagoon
 - Tomales Bay
 - Marin County
- Climate-Smart Plan (33/50 top priorities)

A mini-CRSMP in San Francisco

- Photo: SPUR
- City of SF and NPS (GGNRA)
 - Sand trucking from NOB to SOB in 2012, 2014, 2016
- USACE
 - Single placement of 300,000 cubic yards
 - Dredged sediment pumped onshore at Sloat and to 4000' south
 - Designation of OBDS as permanent site
- Ocean Beach Master Plan
 - 2 million cubic yards of sand placed every 10 years

A mini-CRSMP in Bolinas Lagoon

- Sediment management objectives
 - Restore natural processes for resilience and sustainability
- Kent Island Restoration
- Bolinas "Y" at Lewis and Wilkins Gulch creeks

A mini-CRSMP in Half Moon Bay

- Pilot project at Surfer's Beach
- Move 140K-150K of harbor sand to revetment along Hwy 1
- Expected to last only 6 years
 - Design is meant buy time for realignment of Hwy 1

Climate Change Plan Connection

- Habitats as defined:
 - Beaches and dunes
 - Cliffs
 - Rocky intertidal
 - Outer coast estuaries

- 33/50 priorities connect directly or indirectly to sediment management, including #11:
 - Create local and regional sediment management plans for full range of the sanctuary that are climate informed.

- Variety of actions
 - Active sediment placement
 - Removal of armoring
 - Sacrifice of beaches
 - Watershed approach

- Variety of project locations
 - Bolinas Lagoon
 - Tomales Bay
 - Drakes Estero
 - Surfer's Beach (HMB)
 - Dillon Beach

Our Story Concludes

- Headlands and Littoral Cells
 - Boundaries are in flux so best to plan around them
- Sediment Management
 - Coast of Sanctuary is ready for a regional sediment plan, or at least segments
- Climate Change Connection
 - Sanctuary has laid some essential groundwork for merging sediment management with climate change adaptation planning

IF MAD SCIENTISTS

CAN ENDANGER THE WORLD,

NICE SCIENTISTS CAN SAVE IT.

Thank you!

dgeorge@ucdavis.edu

