

Blue Carbon Assessment of GFNMS

Elizabeth Francis

Agenda

- 1. Published Data
 - Blue carbon equations
- 2. Assessment
 - Salt Marsh: Calculation and Results
 - Seagrass: Calculation and Results
 - Assessment Conclusions
 - Limitations
 - Next Steps
- 3. Climate Change Impacts
- 4. Questions

Published Data

Seagrass and Salt Marsh

- Carbon Stock
- CO2 Emissions
- Annual Sequestration Rate

Ecosystem Type	Carbon Stock (Mg/ha)	Range (Mg/ha)	CO₂ Mequiv/ha	Annual Sequestration
Mangrove	386	55-1378	1415	-
Tidal Salt Marsh	255	16-623	935	210 (Laffoley et al., 2009)
Seagrass	108	10-829	396	83 (Chmura et al., 2003)

Table 1: Range of values of soil organic carbon stocks up to 1-meter depth for mangroves, tidal marshes, and seagrass ecosystems (Adapted from IPCC 2013).

Equations

- Carbon Stock:
 - Total Carbon (MgC/ha) x area (ha)
- Emissions:
 - Carbon Stock (MgC) x CO2 conversion factor (3.67)
- Annual Sequestration:
 - Area (m2) x average annual sequestration rate

Salt Marsh Calculations

- Carbon Stock = Total Carbon (MgC/ha) x area (ha)
 - 255 (MgC/ha) x 320 (ha) = 81,668 (MgC)
- Emissions = Carbon Stock (MgC) x conversion factor
 - 81,668 (MgC) x 3.67 = 299,721 (MgC)
- Sequestration Rate
 - 3,202,663 (m2) x 210 = 673 (MgC/year)

Salt Marsh

• GFNMS Salt Marsh Area: 3,202,663 m2

• Storage: 81,668 MgC

Annual Sequestration: 673 MgC/year

• Emissions: 299,721 MgC

Tomales Bay

Bolinas Lagoon

Seagrass Calculations

- Carbon Storage
 - 108 (MgC/ha) x 715 (ha) = 77,220 (MgC)
- Emissions
 - 77,220 (MgC) x 3.67 = 283,397 (MgC)
- Sequestration rate
 - 7,153,475 (m2) x 210 = 594 MgC/year

Seagrass

- GFNMS Seagrass Area: 7,153,475 m2
 - Tomales Bay Area: 7,119,158 m2
- Carbon Storage: 77,220 MgC
- Annual Sequestration: 594 MgC/year
- Emissions: 283,397 MgC

Assessment Conclusions

Total Carbon Stock: 158,888 MgC

Annual Sequestration: 1,267
 MgC/year

Emissions: 583,119 MgC

Seagrass covers largest area

 Salt Marsh contributes greater to carbon storage and sequestration

Significant Carbon Stores in GFNMS

Limitations

- Tier 1 Assessment
 - Global rates used
- Finer scale assessment needed
 - California specific rates
 - Location specific rates
- Incomplete data extent

Kelp Stock

- Bull kelp biomass needed
- Biomass x NPP = Total NPP
- Total NPP X conversion factor = carbon stock

Kelp Carbon Sequestration

 Carbon stock used to calculate avenues of carbon sequestration

 Sequestration avenues taken from Krause-Jensen & Duarte (2016)

- Carbon storage percentages
 - 0.39% kelp beds
 - 7.70% below the mix layer
 - 2.3% deep sea
 - .92% continental shelf

Whales

- Whale contribution to carbon storage
- Deadfall carbon main focus
- Will provide support for conservation efforts

Climate Change Impacts

Sea Surface Temperatures

Sea Level Rise

Seagrass

- Temperature impacts
- Australia case study: Shark Bay
 - 2010
 - 2-4° Celsius exposure
 - Lost 22% of total area
 - Released 2-9 Tg CO2
 - No Recovery
- No documented seagrass death from high SST in California

Salt Marsh

- Expanding wetland boundaries
 - 22% increase in area
 - Higher sequestration
- Impediments to expansion cause marsh drowning

Questions?